

 White Paper – Version Management, Version 1.1, 2020-09-29

1

White Paper
Version Management

Forward and Backward Compatibility

Today, the transmission of static fund data is still largely a manual process, whereby version
management plays a minor role. If a fund distributor requires a new field or an additional attribute in
an existing field, it will modify its spreadsheet accordingly and send the fund provider its new
requirements. The fund provider will then modify the value manually or semi-automatically and send it
to the fund distributor in a spreadsheet or data file.

However, if fund data is to be kept constantly up to date and transmitted automatically, it is necessary
to ensure, firstly, that the sending and receiving systems understand each another and, secondly, that
the common language—in this case openfunds—can be developed further. openfunds is not alone in
facing this challenge: the same applies to virtually all systems that communicate with one another via
the Internet. Hyper Text Markup Language (HTML), among the mostly widely recognised languages—
maintained by the World Wide Web Consortium and currently in its fifth version—is a case in point. In
the same way that a browser must be capable of displaying pages that do not use the latest HTML
version, openfunds must be able to guarantee a certain level of backward and forward compatibility.

As far as openfunds is concerned, a receiving system is said to be backward compatible if it accepts data
intended for an earlier version of openfunds. For example, the receiver may have already upgraded its
database to version 1.1, while the sender only recognises the fields and attributes of version 1.0. If the
receiver’s database can still read and save the data, then it is said to be backward compatible with
version 1.0.

An openfunds database is said to be forward compatible if it is capable of processing data from a more
recent version of itself. This is the case, for example, when the receiving database is running on
openfunds version 1.1 but is capable of processing data from a database containing openfunds fields
from version 1.2. The following diagram illustrates this situation:

Figure 1: Forward and backward compatibility

The database (middle, blue, version 1.1) is backward and forward compatible with data file version 1.0

(left, grey) if it can accept, read and save the data present in this file. It is backward and forward

compatible with data file version 1.2 (right, orange) if it can accept, read and save the data present in

this file. However, it is very hard to guarantee forward compatibility because when a version 1.1 is

created, the future changes that will lead to version 1.2 are unknown. For this reason, openfunds does

not guarantee forward compatibility. Backward compatibility is a different matter as the field definitions

of version 1.0 are known. If certain rules are observed when creating a version 1.1, backward

Version
1.0

Version
1.2Version 1.1

 White Paper – Version Management, Version 1.1, 2020-09-29

2

compatibility can be guaranteed to a relatively large extent. These rules and the constraints involved

are described in the following section.

Backward compatibility in the openfunds Standard

Below are four scenarios of a database in version 1.1, which should be able to read and export the data
files of version 1.0 as well as the data files of version 1.1. This can be illustrated schematically as shown
in the four cells in the table below: the diagrams differ in terms of the version of the data file to be
imported and the version of the data file to be exported:

Figure 2: Diagram of an import and export matrix with different openfunds versions

Each of the four cells represents a different scenario. The colours represent the version to be processed:
either 1.0 (grey) or 1.1 (blue). In all scenarios, the database that is to read, process and subsequently
export the data is in openfunds standard 1.1. The version 1.2 (orange) present in Figure 1 is not shown
here as openfunds does not guarantee forward compatibility (see above).

Cell I (top left):
• Data file to be read: Version 1.0
• Data file to be exported: Version 1.0

Cell II (top right):
• Data file to be read: Version 1.1
• Data file to be exported: Version 1.0

Cell III (bottom left):
• Data file to be read: Version 1.0
• Data file to be exported: Version 1.1

Cell IV (bottom right):
• Data file to be read: Version 1.1
• Data file to be exported: Version 1.1

For all the scenarios outlined above, the database is running on openfunds version 1.1

Changes to Fields in Two Successive Versions

In openfunds, version changes involve new, modified and obsolete fields. The six most significant
changes affecting fields when a new version is introduced (here: version 1.0 is replaced by version 1.1)
are listed below:

1) Version 1.1 contains a new field [N], which was not present in version 1.0.

2) In version 1.1, a field present in version 1.0 has had a value added. (The opposite scenario, i.e.
the elimination of values, is deliberately excluded. See the rule at the end of this Article.)

Import from 1.0 Import from 1.1

Ex
p

o
rt

 t
o

 1
.0

Ex
p

o
rt

 t
o

 1
.1

Database in openfunds standard 1.1

D
atab

ase in
 o

p
en

fu
n

d
s stan

d
ard

 1
.1

I II

III IV

Version
1.0

Version
1.0Version 1.1

Version
1.1

Version
1.0Version 1.1

Version
1.1

Version
1.1Version 1.1

Version
1.0

Version
1.1Version 1.1

 White Paper – Version Management, Version 1.1, 2020-09-29

3

3) In version 1.1, a field that was present in version 1.0 has been deleted and has not been replaced
(//No longer supported//).

4) A new field [N] replaces an old field [O]. [N] can be derived from [O] and vice versa.

5) A new field [N] replaces an old field [O]. [N] can be derived from [O] but not vice versa.

6) A new field [N] replaces an old field [O]. [O] can be derived from [N] but not vice versa.
If we now insert these six field changes into the matrix above (Figure 2), the following picture
emerges:

Figure 3: Six possible field changes

Cell I: Importing data fields from version 1.0 and exporting to version 1.0

Scenario 1) Version 1.1 contains a new field [N] which was not present in version 1.0.

This scenario is relatively straightforward as we have a new field [N] here, which the import does not
recognise. Therefore, the database will not update the new field [N]. However, as the data is to be
exported to version 1.0 as well, and therefore the export does not recognise [N], either, this is irrelevant.

Scenario 2) Version 1.1 contains an old field [O] which has had an attribute added.

This scenario is relatively straightforward, too, as we have a new attribute here in field [N], which is not
recognised by the old field [O] or by the import. Therefore, the database will not save this value. As data
is to be exported to version 1.0, the receiver will never ask for the new attribute as it does not recognise
it.

Scenario 3) In version 1.1, a field [O] which was present in version 1.0 has been deleted and has not
been replaced. In the openfunds standard, this is noted accordingly.

This poses no problem either, as long as the old field [O] is saved in the database: if this condition is
met, the database is able to read the field [O] during import and to output it again during export to
version 1.0. This occurs even though the database itself already runs on version 1.1. Therefore, in this
case, it is backward compatible.

Scenario 4) A new field [N] in the database which replaces an old field [O] during data import. [N] can
be derived from [O] and vice versa.

This scenario poses no problem insofar as it does not matter whether or not the field is present in
version 1.0 or version 1.1. Exporting and importing pose no problem either as the values can be
translated in both directions.

Import from 1.0 Import from 1.1

Ex
p

o
rt

 t
o

 1
.0

1) ✓ 1.0 does not know the field

2) ✓ Value is not transmitted. Therefor no errors.

3) ✓ Date base still knows the no longer supported field

4) ✓ Translation for import and Export, old field deleted

5) ✓ Old and new translated value in DB

6) ✓ Keep old field in DB

1) ✓ 1.0 does not know the field

2) () Recieving party receives an unkown value

3)  Version 1.1 does not know the field. Export to 1.0 not possible

4) ✓ Translation for Export

5)  Translation in Version 1.0 not possible, therefor no Export

6) ✓ Translation for Export

Ex
p

o
rt

 t
o

 1
.1

1)  DB does not contain any value as the field

 is missing in V1.0

2) ✓ All improted values can be exported to V1.1

3) ✓ Field is not expected in export 1.1

4) ✓ New value translated from the old value

5) ✓ New value translated from the old value

6)  DB does not contain any value as the field

 is missing and cannot be derived

✓

D
atab

ase in
 o

p
en

fu
n

d
s stan

d
ard

 1
.1

Database in openfunds standard 1.1

I II

III IV

 White Paper – Version Management, Version 1.1, 2020-09-29

4

Scenario 5) A new field [N] in the database which has replaced an old field [O] during data import. [N]
can be derived from [O] but not vice versa (i.e. [O] cannot be derived from [N]).

This scenario is similar to scenario 2). Exporting to both versions is possible provided that both the old
field [O] and the new field [N] (the latter possibly translated) are saved.

Scenario 6) A new field [N] in the database which has replaced an old field [O] during data import. [O]
can be derived from [N] but not vice versa ([N] cannot be derived from [O]).

In this scenario, the database will not contain a new value [N]. However, since data is to be exported to
version 1.0, this poses no problem because during export to version 1.0 only the old value is required.
However, this is only possible if the database saves the old field [O].

Cell II: Importing data fields from version 1.1 and exporting to version 1.0

Scenario 1) Version 1.1 contains a new field [N] which is not recognised by version 1.0.
The database accepts the new field [N] from version 1.1 and saves it. As the data is exported to version
1.0, the field [N] is not exported, nor is it expected.

Scenario 2) Version 1.1 contains an old field [O] which has had an attribute added.

This is a special case: As the importing database recognises the new attribute the second recipient might
receive a value that it cannot validate. This might indicate that attributes have been added: therefore
openfunds recommends accounting for this scenario during implementation and adding a note
indicating that the field in question needs checking for an update in openfunds.

Scenario 3) In version 1.1, a field [O] from version 1.0 has been deleted and has not been replaced.

As version 1.1 does not recognise the old field [O], the latter cannot be saved in version 1.1. Therefore,
an export back to version 1.0 is no longer possible, either.

Scenario 4) A new field [N] in the database which has replaced an old field [O] during data import. [N]
can be derived from [O] and vice versa.

This scenario poses no problem insofar as it does not matter whether or not the field is present in
version 1.0 or version 1.1. Exporting and importing data pose no problem either as the values can be
translated in both directions.

Scenario 5) A new field [N] in the database which has replaced an old field [O] during data import. [N]
can be derived from [O] but not vice versa (i.e. [O] cannot be derived from [N]).
As in scenario 3), unfortunately, backward compatibility is not provided as [O] can no longer be
reconstructed from [N], nor has it been supplied as [O].

Scenario 6) A new field [N] in the database which has replaced an old field [O] during data import. [O]
can be derived from [N] but not vice versa (i.e. [N] cannot be derived from [O]).
The database contains only the new value [N]. However, as this value can be translated back into the
value [O], this poses no problem.

Cell III: Importing data fields from version 1.0 and exporting to version 1.1

Scenario 1) Version 1.1 contains a new field [N] which is not recognised by version 1.0.

The file to be imported (in version 1.0) does not recognise the new field [N]. Therefore, the database
has not saved this value and cannot export it.

Scenario 2) Version 1.1 contains an old field [O] which has had an attribute added to it.

The import file version 1.0 may contain values that are recognised by both the database and the export
file as both recognise all the values present in version 1.0. Therefore, no data is lost in this scenario.

https://www.openfunds.org/fieldmenu/fields/

 White Paper – Version Management, Version 1.1, 2020-09-29

5

Scenario 3) In version 1.1, a field [O] from version 1.0 has been deleted and has not been replaced. This
fact is noted accordingly in the openfunds standard.

During import, this field is supplied but cannot be saved in the database. Therefore, the value cannot
be exported to version 1.1 either. However, since the field is no longer present in version 1.1, this has
been marked here with a green “ok”.

Scenario 4) A new field [N] in the database which has replaced an old field [O] during data import. [N]
can be derived from [O] and vice versa.

This scenario poses no problem insofar as it does not matter whether or not the field is present in
version 1.0 or version 1.1. Exporting and importing data pose no problem either as the values can be
translated in both directions.

Scenario 5) A new field [N] in the database which has replaced an old field [O] during data import. [N]
can be derived from [O] but not vice versa (i.e. [O] cannot be derived from [N]).

This scenario poses no problem as the data is imported into version 1.0 with the old value [O]. This is
translated into a new field [N], which is then exported.

Scenario 6) A new field [N] in the database which has replaced an old field [O] during data import. [O]
can be derived from [N] but not vice versa (i.e. [N] cannot be derived from [O]).

The import contains only the field [O]. As it is impossible to derive the new field [N] from the old field
[O] for the version 1.1, on which the database runs, the database does not contain the value [N].
Therefore, an export is not possible.

Cell IV: Importing data fields from version 1.1 and exporting to version 1.1

This is the most straightforward scenario as all three systems involved (import file, database and export
file) run on the latest version. Without iterating the individual scenarios, this is marked with a single
green tick.

Major and minor Releases

In a major release, the digit to the left of the decimal point in the version number is incremented by
one. For example, a version 1.8 will be followed by version 2.0; In a minor release, the number after the
decimal point is incremented. For example, a version 1.2 will be followed by version 1.3.

Rules and principles

openfunds has set itself the following rules and principles with the aim of minimising the cost of
implementation, maintenance and development.

• The data ID of an openfunds field cannot be changed
The data ID is inextricably linked to a field’s meaning. In other words, the field name may be
changed as long as the field’s meaning and data ID remain unchanged. This also means that
once a data ID has been assigned, it cannot be used for a different field. This also applies if the
field represented by the data ID no longer exists in the current openfunds version.

• No fields disappear from one major release to another
This means that a field that has become obsolete is simply marked as “//no longer
supported…//”. In this case, reference is usually made to one or more new fields that are to be
used instead.

 White Paper – Version Management, Version 1.1, 2020-09-29

6

• Versioning has to do with fields not files
Therefore, a file may contain fields from different versions. To this end, openfunds records the
point in time when a field is introduced, and if it is marked as //no longer supported …//, it will
record the last release in which the field was supported. An overview is provided in the Excel
file under “Fields”.

• Attributes may be added but not removed
Attributes (values) of individual fields may not be deleted. If this is required, the field “dies”
(//no longer supported …//), and a reference is added to the newly created field. However,
attributes may be added as described in case 2) in the matrix above.

• Major releases will affect backward compatibility
One of the reasons for this is because fields marked as //no longer supported … // are dropped,
and, consequently, translation may no longer be possible. That said, the assigned data IDs for
these //no longer supported … // fields are still blocked. All versions are listed on the openfunds
website under “Fields”. This ensures that fields that are currently no longer listed can be
retrieved by searching for the field list with the highest version number within the previous
major releases.

Note - version 1.99

Fields that are in the openfunds database but are not yet assigned to any version for release will

typically be assigned the version number 1.99, a test version meaning the field has not been released.

Such fields will typically not be visible to users until they are released, but in cases that they are, they

should be disregarded as not yet available for use.

Document Information
Title: Version Management

Language: English

Confidentiality: Public

Authors: openfunds

Revision History

Version Date Status Notice

1.1 2020-09-29 Update Appended note about test version 1.99.

1.0 2018-11-16 Final First Version.

Implementation

If you have any questions about the new data type or difficulties with implementation please contact

us at businessoffice@openfunds.org.

Joining openfunds

If your firm has a need to reliably send or receive fund data, you are more than welcome to use the
openfunds fields and definitions free-of-charge. Interested parties can contact the openfunds
association by sending an email to: businessoffice@openfunds.org

https://www.openfunds.org/fieldmenu/fields/
https://www.openfunds.org/fieldmenu/fields/
mailto:businessoffice@openfunds.org
mailto:businessoffice@openfunds.org

 White Paper – Version Management, Version 1.1, 2020-09-29

7

openfunds.org
c/o Balmer-Etienne AG
Bederstrasse 66
CH-8002 Zurich
Tel.: +41 44 286 80 20
Email: businessoffice@openfunds.org
Website: https://www.openfunds.org

mailto:businessoffice@openfunds.org
https://www.openfunds.org/

